Activities in biomechanics and mechanobiology focus on the combined use of mechanical engineering principles and biological knowledge to understand disease progression and the performance of medical devices.
Central mechanical aspects are fluid dynamics, thermal transport, elastic and dynamics processes and materials in living systems.
Li, Y.-F. et al., 2015. Ultraporous Electrospun PCL-PEO Microfibrous Scaffolds Enhance Cell Infiltration and Colonization, Nanoscale, 2015
Wittenborn, T.R. et al., 2014. Accumulation of nano-sized particles in a murine model of angiogenesis. Biochemical and Biophysical Research Communications, 443(2), pp.470–476.
Andersen, M.Ø. et al., 2013. Spatially Controlled Delivery of siRNAs to Stem Cells in Implants Generated by Multi‐Component Additive Manufacturing. Advanced Functional Materials, 23, pp.5599–5607.
Nygaard, J.V. et al., 2011. Characterisation of internal morphologies in electrospun fibers by X-ray tomographic microscopy. Nanoscale, 3(9), pp.3594–3597.
Nygaard, J.V. et al., 2008. Investigation of particle‐functionalized tissue engineering scaffolds using X‐ray tomographic microscopy. Biotechnology and Bioengineering, 100(4), pp.820–829.